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Self-Tuning Asynchronous Filter for Linear
Gaussian System and Applications

Wenjun Lv, Yu Kang, Senior Member, IEEE, and Yunbo Zhao, Senior Member, IEEE

Abstract—In this paper, optimal filtering problem for a class
of linear Gaussian systems is studied. The system states are
updated at a fast uniform sampling rate and the measurements
are sampled at a slow uniform sampling rate. The updating
rate of system states is several times the sampling rate of
measurements and the multiple is constant. To solve the problem,
we will propose a self-tuning asynchronous filter whose contri-
butions are twofold. First, the optimal filter at the sampling
times when the measurements are available is derived in the
linear minimum variance sense. Furthermore, considering the
variation of noise statistics, a regulator is introduced to adjust
the filtering coefficients adaptively. The case studies of wheeled
robot navigation system and air quality evaluation system will
show the effectiveness and practicability in engineering.

Index Terms—Air quality evaluation system, linear Gaussian
system, wheeled robot navigation system.

I. INTRODUCTION

DUE to its conciseness which may facilitate solutions, the
linear Gaussian system is a preferable model to describe

many physical systems, especially in engineering field such as
target tracking, robot navigation, and fault diagnosis [1]. The
Kalman filter has been proved to be an optimal filter for linear
Gaussian systems for the filtering problem [2]. Furthermore,
based on the concept of the conventional Kalman filter, a vari-
ety of improved Kalman filters have been investigated to solve
different practical problems [3]−[8]. This paper is devoted
to solve the optimal filtering problem for a class of linear
Gaussian systems where the system states are updated at a
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fast uniform sampling rate and the measurements are sampled
at a slow uniform sampling rate. The updating rate of system
states is several times the sampling rate of measurements and
the multiple is constant. In other words, there is currently
no available measurement methods for systems whose states
update during the period between two adjacent measurements.
Therefore, the conventional Kalman filter is invalid for this
case due to the asynchronism between system states updating
and measurements sampling.

The proposed problem in this paper can be categorized
as either a filtering problem of a special class of systems
suffering the measurement dropouts or delays, or a multi-
rate information fusion problem. The distributed H∞ filtering
problem for a class of discrete-time Takagi-Sugeno fuzzy
systems was investigated in [9]. Compared with the robust
filter, there is no doubt that the optimal filter is preferred.
The optimal linear estimation problem for linear discrete-
time stochastic systems with multiple packet dropouts are
well investigated in [10]−[12]. For this kind of systems, they
developed the optimal filter, predictor, and smoother, whose
solutions are computed via a Riccati difference equation.
Aiming at the communication delays, the optimal filtering
problem for the networked systems containing multi-state
Markovian transmission delay and one-step random commu-
nication delay were investigated [13], [14]. These works were
investigated under the occurrences of measurement dropouts
and delays which can be modelled as a stochastic process.
However, the measurements are usually timestamped, so the
time instants when these uncertainties occur are determinable.
As for the multi-rate sampling discrete system, optimal linear
filter was obtained in the sense of linear minimum variance
[15], [16]. But the state argumentation method will result in
huge computational complexity. Although modelling without
resorting to state argumentation method, the filtering accuracy
is relatively low in that the system noises were ignored during
the modelling [17], [18]. In this paper, in order to solve the
aforementioned problem, the optimal filter at the sampling
time when the measurements are available is derived in the
linear minimum variance sense. Furthermore, considering the
variation of noise statistics, a regulator is introduced to adjust
the filtering coefficients adaptively.

The proposed filter has a typical application in wheeled
robot navigation systems. The external references are often
used to correct the navigation system by means of global
positioning system (GPS) or the other approaches which are
time-consuming [19]−[21], such that they will suffer from the
multi-rate issue. Another application of the proposed filter can
be found in the air quality evaluation systems to estimate the
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street air pollutant concentration in real time, which is of great
significance due to its dominance for government to make
more effective control strategies to improve the atmospheric
environment. The conventional method termed as model-based
method and the emerging technology called mobile-sensing
method can be combined to improve the performance based
on their complementary characteristics, but in an asynchronous
way [22]−[24]. In this paper, we consider the application of
the proposed filter design for these two practical systems.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III discusses the solution in
detail. Section IV is composed of two case studies, i.e., the
wheeled robot navigation system and the air quality evaluation
system. The paper is concluded in Section V.

II. PROBLEM STATEMENT

Considering a linear Gaussian system described by the
following linear stochastic difference equation

xt+1 = Fxt + Gut + Γwt (1a)
yNt = HxNt + vNt (1b)

where F , G, Γ and H are known time-invariant matrices
with proper dimensions, t = 0, 1, . . ., is the sampling time
of system states, Nt is the sampling time of measurements
(N is termed as synchronization coefficient), xt ∈ Rn are the
system states, yt ∈ Rm are the measurements, ut ∈ Rp are
the controls, and wt ∈ Rq and vt ∈ Rm are the system noise
and measurement noise, respectively.

The following assumptions are needed.
Assumption 1: The noises are independent Gaussian white

processes such that

E

{[
wt

vt

] [
w′

τ v′τ
]}

=
[
Q 0
0 R

]
δtτ (2a)

E{x0} = χ (2b)
E{(x0 − χ)(x0 − χ)′} = ρ (2c)

where Q and R are variance matrices of wt and vt, respec-
tively; δtτ is the Kronecker delta function where t and τ are
both sampling times, δtτ = 1 if t = τ and δtτ = 0 otherwise;
E represents mathematical expectation and prime is for the
transposition.

Assumption 2: The pairwise structure (F ,H) are completely
observable, that is, the observability matrix O = [H, HF , . . . ,
HFn−1]′ is of full-rank where F = F N .

Assumption 3: The noise variance matrices Q and R are
unknown and slowly changing.

Remark 1: According to Assumption 1, the system and
measurement noises are assumed to be the independent Gaus-
sian white processes. This is reasonable for some practical
systems. It is well known that many random variables (RVs)
in nature are actually the sum of many independent RVs.
According to the fact that the sum of independent RVs tends
to a Gaussian RV regardless of their probability distribution
functions [25]; this is why the noises are assumed to have
Gaussian distribution. As for the independence assumption,
the coloured noise can be modelled by a linear system with

white noise as its input, indicating that the coloured noise can
be “whitened” by state argumentation method.

The problem is to develop a linear minimum variance filter
x̂t based on the measurement set {y0,yN ,y2N , . . . ,ybt/NcN}
where bt/Nc is the largest integer not larger than t/N .

III. SELF-TUNING ASYNCHRONOUS FILTERING

The proposed filter is first discussed, followed by the noise
variance estimator.

A. Improved Kalman Filter

The Kalman filter has been proved to be an optimal filter
for linear Gaussian systems. It estimates the system states and
then obtains feedback in the form of measurement, dividing
the equations into two groups: predictor equation and corrector
equation. The former is responsible for projecting forward
the current state estimations and error covariance to obtain
the priori estimations for the next time instant. The latter
is responsible for the feedback, that is, incorporating a new
measurement into the priori estimations to obtain an improved
posteriori estimation. The process is repeated with the previous
posteriori estimation used to predict the new priori estimation.
Hence, the Kalman filter performs as a time-variant recursive
optimal filter.

Suppose that {yNt, t = 0, 1, . . .} is obtained at time Nt,
coupled with the optimal estimation x̂Nt of xNt which is the
linear summation of {yNt, t = 0, 1, . . .}. For the next time
instant without measurement, we have

x̂Nt+1 = F x̂Nt + GuNt (3)

which is an unbiased estimation. Define the estimation error
xt = xt − x̂t and its variance Pt = E{xtx

′
t}, then

PNt+1 = E{xNt+1x
′
Nt+1} (4a)

= E{(xNt+1 − x̂Nt+1)(xNt+1 − x̂Nt+1)′}
= E{(FxNt + ΓwNt)(FxNt + ΓwNt)′}
= E{FxNtx

′
NtF

′ + ΓwNtw
′
NtΓ

′}
= FPNtF

′ + ΓQΓ′ (4b)

which is essentially the predicted estimation error variance in
the conventional Kalman filter.

During the period of {Nt + τ, τ = 1, 2, . . . , N − 1},

x̂Nt+τ = F x̂Nt+τ−1 + GuNt+τ−1 (5a)

= F τ x̂Nt +
τ−1∑
i=0

F τ−1−iGuNt+i (5b)

with the estimation error variance of

PNt+τ = FPNt+τ−1F
′ + ΓQΓ′ (6a)

= F τPNtF
τ′ +

τ−1∑
i=0

F iΓQΓ′F i′ (6b)

At the time Nt+N when the measurement is available, we
have

x̃Nt+N = F x̂Nt + µNt (7a)

P̃Nt+N = FPNtF ′ +Q (7b)
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where F = F N , µNt =
∑N−1

i=0 F N−1−iGuNt+i and Q =∑N−1

i=0 F iΓQΓ′F i′. The x̃Nt+N and P̃Nt+N are essentially the
predicted state estimation and predicted error variance in a
conventional Kalman filter. Similar to the conventional Kalman
filter [26], we can deduce the so-called asynchronous Kalman
filter (ASYNCKF) presented in Algorithm 1. We use the
word “asynchronous” to indicate that the predicted estimation
for system states and correction by measurements are not
synchronized.

Algorithm 1 Asynchronous Kalman Filter (ASYNCKF)
Input: Measurement set {y0, yN , y2N , . . . , ybt/NcN}, prior statistics

χ, ρ, Q and R.
Output: Estimation set {x̂0, . . . , x̂t}.
1: Initialization:

Set t := 0, x̂0 := χ and P0 := ρ.
2: Prediction:

Increase t by 1.
Predicted state estimation: x̃t = F x̂t−1 + Gut−1.
Predicted error variance: P̃t = FPt−1F ′ + ΓQΓ′.

3: Correction:
Optimal Kalman gain:

Kt :=





0n×m, missing measurement

P̃tH′(HP̃tH′ + R), others

Corrected state estimation: x̂t := x̃t + Kt(yt −Hx̃t).
Corrected error variance: Pt := (I −KtH)P̃t.

4: Feedback:
Return to Step 2.

The effect on filtering performance brought by N can be
obtained by a simple analysis. The estimation error variance
Pt will increase continuously during the period without mea-
surements, because there is no measurements to correct the
estimation. Meanwhile, a larger N will result in a larger Q,
and thus a larger Pt at t = 0, N, 2N, . . .. Therefore, there is
no doubt that the filter performs better with the decrease of
N .

The ASYNCKF algorithm is a time-varying recursive filter
implemented by calculating the optimal Kalman gain Kt at t =
0, N, 2N, . . ., which brings great computational complexity;
especially for high-dimensional matrices. However, if Kt is
converged to a constant matrix K as t →∞, the time-invariant
filter can be obtained via substituting Kt by K. This is only
available if the process equation (1a) and measurement model
(1b) are synchronized.

Considering the period without measurements of {Nt + τ,
τ = 1, 2, . . . , N − 1},

xNt+τ = FxNt+τ−1 + GuNt+τ−1 + ΓwNt+τ−1 (8a)

= F τ x̂Nt +
τ−1∑
i=0

F τ−1−iGuNt+i +
τ−1∑
i=0

F τ−1−iΓwNt+i

(8b)

and then setting τ = N , the synchronization model of (1a)
and (1b) can be derived as

xNt+N = FxNt + µNt + ωNt (9a)
yNt = HxNt + vNt (9b)

where F = F N , µNt =
∑N−1

i=0 F N−1−iGuNt+i and ωNt =∑N−1

i=0 F N−1−iΓwNt+i is the Gaussian white noise with the
variance matrix of Q =

∑N−1

i=0 F iΓQΓ′F i′. The sufficient
condition for the convergence of Kt at t = 0, N, 2N, . . .
is that the controllability matrix C = [I,F , . . . ,Fn−1] and
observability matrix O = [H, HF , . . . , HFn−1]′ are of full-
rank. The first condition holds obviously and the second one
is under the Assumption 2. Then, we have the time-invariant
form of ASYNCKF as

x̂t+1 = (I −KH)(F x̂t + Gut) + Kyt (10)

where the matrix K is set as a null matrix at t 6= 0, N, 2N, . . .
and a non-zero matrix at t = 0, N, 2N, . . . whose value can
be determined by solving the following equation set

E = FPF ′ +Q (11a)
K = EH ′(HEH ′ + R)−1 (11b)
P = (I −KH)F . (11c)

It has been proven that the time-invariant filter will converge
to the optimal time-variant Kalman filter with probability one,
and therefore the convergence of the time-invariant form of
ASYNCKF can be easily deduced [27]. Note that we use the
word “time-invariant” here to show the invariance of KNt; the
Kalman Gain switches between two constant matrices instead
of an infinite set. This greatly reduces the computational
complexity, making the time-invariant form more applicable
in practice in spite of its sub-optimality.

B. Noise Variance Estimator

The proposed regulator can be described as a noise variance
estimator Q̂Nt and R̂Nt which are the linear functions over
{yNt, t = 0, 1, 2, . . .}. Rewriting (9a) yields

xNt+N = q−NFxNt+N + GµNt + ΓωNt (12)

where q−1 is the backward shift operator such that q−1xt+1 =
xt. Then

xNt+N = (I − q−NF)(GµNt + ΓωNt). (13)

Substituting (13) into (9b) yields

yNt = H(I − q−NF)(Gq−NµNt + Γq−NωNt) + vNt (14)

and then using

I − q−NF =
adj(I − q−NF)
det(I − q−NF)

(15)

where adj is adjoint matrix and det is the determinant, (14)
becomes

det(I − q−NF)yNt =
Hadj(I − q−NF)(Gq−NµNt + Γq−NωNt)

+ det(I − q−NF)vNt. (16)

Conducting the left-coprime factorization [28] on both sides,
we have

A(q−N)yNt =
Bµ(q−N)µNt + Bω(q−N)µNt + A(q−N)vNt (17)
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where A(q−N), Bµ(q−N) and Bω(q−N) are polynomial matri-
ces with the form of

X(q−N) = X0 + q−NX1 + · · ·+ q−N`xX`x

with A0 = I , B0 = 0. Let zNt = A(q−N)yNt −Bµ(q−N)µNt,
then

zNt = Bω(q−N)µNt + A(q−N)vNt (18)

where zNt is the sum of two independent moving average
processes, so zNt is another moving average process whose
order is the same as that of the component process of higher
order [29].

Define the correlation function of zNt as Λ(i) =
E{zNtz

′
N(t−i)}, where i = 0, 1, 2, . . . , `z and `z = max(i,

Λ(i) 6= 0). Then

Λ(i) =
`λ∑

k=i

(Bω,kQB′
ω,k−i + AkRA′

k−i) (19)

where `λ = max(`a, `b), `λ ≥ `z and Ak = 0 at k > `a and
Bω,k = 0 at k > `b. Expanding (19) by the matrix elements
yields the following linear equations

∆θ = ϑ (20)

where θ is a `θ×1 column vector consisting of all the unknown
elements in Q and R, ϑ is a `ϑ × 1 column vector whose
elements each consist of a constant plus one element of Λ(i), ∆
for a known `ϑ× `θ constant matrix. If ∆ has the full column
rank, then it has the same row rank equalling `θ. Select `θ

linear independent equations, then

∆θ = ϑ (21)

where ∆ is known `θ × `θ nonsingular constant matrix. So θ
can be solved as

θ = ∆−1ϑ. (22)

Substituting the estimations Q̂Nt and R̂Nt into (22) yields

θ̂Nt = ∆−1ϑ̂
Nt

(23)

where θ̂Nt contains the estimation Q̂Nt and R̂Nt.
So the remaining work is to design the estimators for Λ(i),

that is, Λ̂(i)
Nt. Furthermore, considering the variation of noise

statistics, the estimator Λ̂(i)
Nt must gradually discard the history

data, and thus

Λ̂(i)
Nt =

1
t

t∑
k=i

γt−kzNkz
′
N(k−i) (24a)

=
1
t

(
γ

t−1∑
k=i

γt−1−kzNkz
′
N(k−i) + zNtz

′
N(t−i)

)

=
t− 1

t

1
t− 1

(
γ

t−1∑
k=i

γt−1−kzNkz
′
N(k−i) + zNtz

′
N(t−i)

)

=
(

1− 1
t

)
γΛ̂(i)

Nt−N +
1
t
zNtz

′
N(t−i)

= γΛ̂(i)
Nt−N +

1
t

(
zNtz

′
N(t−i) − γΛ̂(i)

Nt

)
(24b)

where 0 < γ < 1 is the fading factor whose fading rate grows
as the positive number γ gets smaller. This is only available
at Nt, t ≥ i while the estimation at other period can be
determined by experience or arbitrarily for its asymptotical
optimality. The γ should be selected as a larger number for
slowly changing noises. To facilitate the implementation in
computation, the recursive form is derived as shown in (24b).
According to the ergodicity of stationary stochastic process
we have Λ̂(i)

Nt → Λ(i) with probability one when t →∞.
The method in (24a) and (24b) is termed as the fading

estimation. The alternative is the finite-memory estimation
with the form of

Λ̂(i)
Nt =

1
T

t∑
k=t−T+1

zNkz
′
N(k−i) (25)

whose recursive form does not exist. However, this method
is still a promising solution. As seen in Fig. 1, the blue plots
represent for the weights assignment on history data of fading
estimation, it is found that all the history data are shrunken
sharply except the current one if γ is set to be a relatively small
and positive. The fading factor is able to control the steepness
of the blue plots. The finite-memory estimation shown as
the red curve performs much better than that of the fading
estimation in spite of the inexistence of recursive form. Hence,
the fading estimation is favored in the real-time situation, and
the finite-memory estimation is favored in the scenarios which
require greater accuracy.

Fig. 1. The comparison between fading estimation and finite-memory esti-
mation on the weights assigned to the history data.

Substituting Λ̂(i)
Nt into (23), the noise variance estimators

Q̂Nt and R̂Nt can be worked out and applied to adjust the
Kalman Gain. Note that there is no need to estimate Q since
the correction of P̃Nt can be solved by applying (7b) which
involves Q only. The noise variance estimator converges to the
real value with probability one, and thus the improved Kalman
filter possess the optimality. The detailed procedure is given
in Algorithm 2.

IV. CASE STUDIES

Two simulation tests for the wheeled robot navigation sys-
tem and air quality evaluation system by applying the proposed
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self-tuning asynchronous filter will be presented.

A. Wheeled Robot Navigation System

A global positioning system (GPS) aided wheeled robot
navigation system is composed of three parts: the space seg-
ment, the control segments and the user segment, as illustrated
in Fig. 2. The wheeled robot is mounted with a GPS receiver
to determine its kinematic states. However, the GPS has a low
updating frequency, and its signal may weaken due to various
reasons.

Algorithm 2 Noise Variance Estimator (VAREST)
Input: Measurement set {yNt, t = 0, 1, 2, . . .}
Output: Noise variance estimation set {Q̂Nt, t = 0, 1, 2, . . .} and
{R̂Nt, t = 0, 1, 2, . . .}

1: Set t := 0, Λ̂
(0)
Nt := 0, Λ̂

(1)
Nt := 0.

2: Set 0 < γ < 1 as an appropriate real number.
3: Increase t by 1.
4: Calculate correlation by fading estimation

Λ̂
(0)
Nt := γΛ̂

(0)
Nt−N + 1

t
(zNtz

′
Nt − γΛ̂

(0)
Nt−N )

Λ̂
(1)
Nt := γΛ̂

(1)
Nt−N + 1

t
(zNtz

′
Nt−N − γΛ̂

(1)
Nt−N )

or using the limit-memory estimation shown in (25).
5: Calculate variance by solving (23)

θ̂Nt = ∆−1ϑ̂Nt.
6: Return to Step 3.

Fig. 2. Illustration for wheeled robot navigation system.

The kinematics of a wheeled robot on roads can be ap-
proximately treated as the motion on the two-dimensional
plane, which can be decomposed to the eastward motion and
northward motion. Let T be the sampling time interval. The
eastward motion is described by eastward location xE,t and
eastward velocity ẋE,t at time Tt. Similarly, the northward
motion is described by northward location xN,t and northward
velocity ẋN,t at time Tt. Based on the Newton’s laws of mo-
tion, the eastward motion and northward motion are modelled
as

xE,t+1 = xE,t + T ẋE,t + 0.5T 2(uE,t + wE,t) (26a)
ẋE,t+1 = ẋE,t + T (uE,t + wE,t) (26b)
xN,t+1 = xN,t + T ẋN,t + 0.5T 2(uN,t + wN,t) (26c)
ẋN,t+1 = ẋN,t + T (uN,t + wN,t) (26d)

where uE,t, uN,t, wE,t and wN,t are the eastward input
acceleration, northward input acceleration, eastward random
acceleration, and northward random acceleration, respectively.

They can be modelled as Gaussian white noises with changing
variance. The updating rate of GPS is usually slower than that
of uE,t and uN,t thus we have the measurement equation as

yE,Nt = xE,Nt + vE,Nt (27a)
yN,Nt = xN,Nt + vN,Nt (27b)

where yE,Nt and yN,Nt are eastward location and northward
location derived from the GPS readings. The noise vE,Nt and
vN,Nt may change with time due to the influence brought
by amount of observable satellites or interference signal.
Similarly, they can be modelled as Gaussian white noises with
changing variance.

Introducing the state variables xt = [xE,t, ẋE,t, xN,t, ẋN,t]′,
yNt = [yE,Nt, yN,Nt]′, ut = [uE,t, uN,t]′, wt = [wE,t, wN,t]′

and vNt = [vE,Nt, vN,Nt]′, the equations from (26a) to (26d),
(27a) and (27b) can be rewritten in the form of (1a), (1b), (9a)
and (9b) where

F =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 , F =




1 NT 0 0
0 1 0 0
0 0 1 NT
0 0 0 1




G = Γ =




0.5T 2 0
T 0
0 0.5T 2

0 T


 , H =

[
1 0 0 0
0 0 1 0

]

Q =
[
σ2

E 0
0 σ2

N

]
, R =

[
ς2

E 0
0 ς2

N

]
.

It is noted that the modelling procedure is very typical by
applying some basic physical principles. It is also termed as
the target tracking problem which is a popular research topic
worldwide [27], [28].

Before the simulation, some parameters should be deter-
mined: the sampling time interval T = 0.1, the noise variance
σ2

E = σ2
N = 49 for the first half period and σ2

E = 900 for the
second half period and ς2

E = 400 for the whole test. To verify
the effectiveness of the proposed filter, three cases are taken
into consideration as follows.

Case 1: The test is done using the asynchronous filter
without considering the variation of noise characteristics.

Case 2: The test is done using the self-tuning asynchronous
filter.

Case 3: The test is done using the conventional Kalman
filter. The last measurement received will be used to project
forward the estimation while the measurements are missing.

The results are shown in Fig. 3 where the black curves rep-
resent the real tracks and those in red, blue, and green for the
estimations under different cases. The error is defined as the
linear distance between the estimations and the real locations.
The comparison between Case 1 and Case 2 indicates that the
noise variance estimator is of significant importance for the
influence brought by variation of noise characteristics can be
eliminated to the largest extent. Using the last measurement
to project forward the estimation can smooth the estimations
during the period without measurements, but the comparison
between Case 2 and Case 3 shows the superiority of the self-
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Fig. 3. Localization results and errors under the Cases 1, 2 and 3.

tuning asynchronous filter. Furthermore, the mean value of
errors under the three cases are 54.74, 39.54, and 72.03,
respectively, such that the proposed filter has the smallest mean
error. In summary, the proposed filter is relatively better than
the existing methods.

Partially enlarging Fig. 3 (b) yields the Fig. 4, where the blue
circles represent measurements, the red curves are estimations,
and the black curves are the real tracks. It is found that the
data derived by dead-reckoning method without correction will
diverge to infinity, but the GPS will correct the estimation in
time while the error gets larger. Although the performance
of dead-reckoning method deteriorates over time, it performs
quite well in a short period, which has complemented the
absence of GPS. Hence the wheeled robot navigation system
is usually integrated with the two methods by fusing their
outputs, to achieve a relatively accurate estimation in real time.

B. Air Quality Evaluation System
Based on the existing dispersion model shown in [30],

[31], we will present a discrete linear parameterised box-type
dispersion model, which is a parameterised semi-empirical
model which makes use of a priori assumptions about the flow
and dispersion conditions. As illustrated in Fig. 5 the streets
can be treated as a closed box with its top exchanging air
with the high-level atmosphere for the very deepness of the
street canyon. The inner atmosphere is relatively stable and the
pollutant concentration will decrease with a fixed proportion
k which is determined by the street structure. Due to the
outmigration of high-pollution factories and the development
in energy industry, traffic emission has become the dominant
factor of street air pollution, especially in traffic-dense area.
So it is assumed that the air pollution has arisen almost solely
by traffic emission u. The high-level atmosphere is relatively
stable such that its pollutant concentration is symbolized by a
constant π. Hence, the atmospheric dispersion system can be
described by

xt+1 − π = k(xt − π) + ut + wt (28)

where xt is the street (the inner box) pollutant concentration,
π the average high-level (the external box) pollutant concen-
tration, ut the new concentration by traffic emission, wt the
Gaussian white noise, k ∈ (0, 1) the dispersion coefficient and

Fig. 4. Partially enlarged detail in the Fig. 3 (b).

Fig. 5. Illustration for atmospheric dispersion system.
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Fig. 6. Simulation results for αt at t = 0, N, 2N, . . . and the estimation error variance under different N .

t the discrete time. The equation reveals how the inner-external
differential concentration changes over time. Considering the
uncertainty existing in the model, a Gaussian white noise wt

is introduced to improve its precision.
The monitoring cars equipped with atmospheric sensors

can be used to correct the estimation. Rearranging (28) and
modeling the mobile-sensing method yields

xt+1 = kxt + χ + ut + wt (29a)
yNt = xNt + vNt (29b)

where χ = (1− k)π, yt stands for the outputs of monitoring
car, wt ∼ N(0, q), and vt ∼ N(0, r) stand for two independent
Gaussian white noises. The constant χ can be seen as the time-
invariant part of ut such that this model is consistent with 1 (a)
and 1 (b).

Set the parameters as dispersion coefficient k = 0.8, noise
variance q = 49 for the first half period, q = 169 for the
second half period and r = 250 for the whole test. In this
test, the variation of estimation error variance under different
N can be observed. It may give us a better understanding of
the influence of accuracy by multi-rate-induced asynchronism.

The results are shown in Fig. 6. The first test result in (a)
shows the asymptotical stability, where the weight αt is set to
be 0 initially and then converges to 0.6917 and 0.4761. It is
found that the filter assigns more weights to the measurements
with the increase of Q. Test results from (b) to (f) show
the estimation error variance changing curve over time with
different sampling time of measurements. The curves (b) show
the estimation error variance with setting N as ∞, that is, there
is no available measurements during the whole test. However,
the error does not go to infinity, but stays steady at 257.9 and
889.5 because the system itself is stable. The curves from (c)
to (e) are based on setting N as 48, 12 and 3, their error bounds
are [126.9, 257.9], [116.4, 208.6], [93.85, 125] for the first half
period and [195.1, 889.5], [183.5, 643.3], [155, 294.5] for the

second half period, respectively. The filter seems to reduce the
estimation error variance while it is getting large such that the
upper bound can be significantly reduced before the variance
reaches steady state. With the sampling time of measurements
getting smaller, the upper bound of error is reduced at the
same time.

V. CONCLUSION

In this paper, the optimal filtering problem for linear Gaus-
sian systems is considered. A self-tuning asynchronous filter
is proposed whose noise variance estimator is able to adjust
filtering coefficients adaptively. Two case studies, the wheeled
robot navigation system and the air quality evaluation system,
have demonstrated the effectiveness of the proposed approach.
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S. Sokhi, R. S. José, N. Moussiopoulos, and R. Berkowicz, Eds.
Netherlands: Springer, 2000, pp. 323−331.

Wenjun Lv is currently a Ph.D. candidate in control
science and engineering at University of Science and
Technology of China. His research interests include
filtering theory and localization technology.

Yu Kang (M’09−SM’14) received his Dr. Eng. de-
gree in control theory and control engineering from
University of Science and Technology of China,
Hefei, China, in 2005. From 2005 to 2007, he was
a Post-Doctoral Fellow with the Academy of Math-
ematics and Systems Science, Chinese Academy of
Sciences, Beijing, China. He is currently a Professor
with the State Key Laboratory of Fire Science,
Department of Automation, and the Institute of
Advanced Technology, University of Science and
Technology of China, and with the Key Laboratory

of Technology in GeoSpatial Information Processing and Application System,
Chinese Academy of Sciences. His current research interests include moni-
toring of vehicle emissions, adaptive/robust control, variable structure control,
mobile manipulator, and Markovian jump systems.

Yunbo Zhao (M’10−SM’14) received the BSc
degree in mathematics from Shandong University,
China in 2003, MSc degree in systems sciences from
the Key Laboratory of Systems and Control, Chinese
Academy of Sciences, China in 2007, and Ph.D.
degree in control engineering from the University
of South Wales (formerly University of Glamor-
gan), Pontypridd, UK in 2008, respectively. He has
held postdoctoral positions with INRIA Grenoble,
France, University of Glasgow, UK and Imperial
College London, UK, respectively. He is currently

a Professor with Zhejiang University of Technology, China. His research
interests include networked control systems and systems biology.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 29,2022 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 


